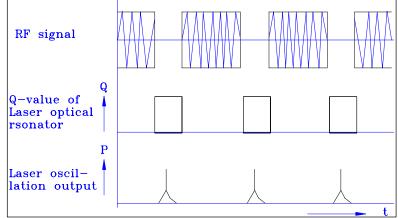



# **Acousto-Optical Q-switch**

The acousto-optical Q-switch often used in the laser marking makes use of mutual interaction between an ultrasonic wave and a light beam in a scattering medium. The light beam that enters in a direction forming a Bragg angle to the wave surface of the acoustic wave in the scattering medium is diffracted in accordance with periodic changes in the diffraction rate produced by the acoustic wave.


The situation is briefly explained. First of all, an RF signal is impressed to the transducer adhered to the molten quartz and thickness extensional vibration is produced. Ultrasonic shear waves are caused to advance in the molten quartz by this vibration, and phase grating formed by acoustic waves is produced. The laser beam is diffracted when it satisfies the



Bragg angle with respect to this phase grating, and is separated in space from the incident light.

If the laser optical resonator is constructed against 0-dimensional diffracted light (undiffracted light), the diffracted light deviates from the laser optical resonator axis when a RF signal is impressed. As a result, loss occurs in the laser optical resonator and laser oscillation is suppressed. To make use of this phenomenon, an RF signal is impressed for a certain length of time only (status of low Qvalue) to suspend laser oscillation. In the meantime, the population inversion of the Nd:YAG rod is accumulated by continuous pumping. When the RF signal is reduced to zero (status of high Qvalue) and the loss to the laser optical resonator is removed, the accumulated energy is activated as laser oscillation in a pulse form within an extremely short length of time. They are Q-switch pulses.

This situation is briefly explained. When an RF signal is subjected to pulse modulation, it is possible to periodically take out a Q-switch pulse. When the period of Q-switch pulses becomes shorter than the life (about 200 µs) of the higher order of the Nd:YAG rod, however, the population inversion decreases and the peak value of Q-switch pulses decreases.





## 1. QS Series Q-switch Element

## 1) Standard QS24/27 Series Industrial Q-switches

A water-cooled acousto-optic Q-Switch for use in high-power Nd:YAG laser systems. Combining top grade fused silica with high quality optical finishing and in-house anti-reflection coatings, this Q-Switch exhibits very low insertion loss and high damage threshold. Through an innovative design and manufacturing process, RF powers up to 100W may be applied.

Standard options include a choice of frequencies (24 to 68MHz), active apertures (1 to 8mm), acoustic modes (compressional for linear polarisation, shear for unpolarised) and water connectors. Customised housings are available for OEM's.

## **Specifications**

Model no: See "Options" below

Interaction medium: Fused silica Operational wavelength: 1064nm

Anti reflection coating: Hard multi-layer dielectric

- Reflectivity:  $\leq 0.2\%$  / surface (< 0.1% typical)

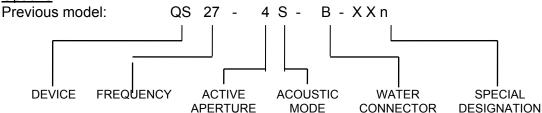
- Damage threshold: > 500MW cm<sup>-2</sup>

≤ 10% (< 5% typical)</p> Insertion loss: See "Options" below Active aperture:

Diffraction (separation) angle ~4.8 mrad **VSWR**: ≤ 1.2:1

Maximum CW drive power: 100W Thermal interlock: +50°C




Flow rate: 190cc / min (minimum)

Water Temperature:

- Recommended operating: 32°C - Recommended maximum: 40°C

See "Options" below Water Connectors:

#### Options



- Q-Switch Device: QS Frequency: 24, 27, 41, 68, 80 - Value in MHz

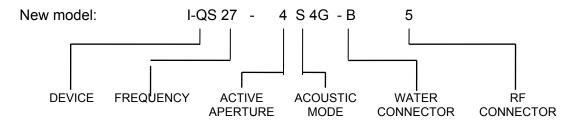
Aperture: 1.6, 2, 3, 4, 5, 6.5, 8 - Value in mm (In general, the aperture of Q-switch is equal to or

larger than the diameter of laser beam or YAG rod.

Acoustic Mode: C - Compressional

> S - Shear

Water Connector: S - Screw-on (Swagelok etc.)


> - Barbed Push-on В

Special Designation: - For non-standard Q-switch models identification characters

which define the configuration may be allocated.

Available models are QS27-3C-B, QS27-4S-S etc.





Device: I-QS - Q-Switch Frequency: 24, 27, 41, 68, 80 - Value in MHz

Aperture: 1.6, 2, 3, 4, 5, 6.5, 8 - Value in mm (In general, the aperture of Q-switch is equal to or

larger than the diameter of laser beam or YAG rod.

Acoustic Mode: C - Compressional

> S - Shear

4G - Fused silica, operation at 1064nm

S - Screw-on (Swagelok etc.) Water Connector:

> В - Barbed Push-on

RF connector: 5 - BNC Fm BH RF connector

Special Designation: - For non-standard Q-switch models identification characters

which define the configuration may be allocated.

Available models are I-QS27-3C4G-B5, I-QS27-4S4G-S5 etc.

## 2) Stallion Series 'Industry Standard' Acousto-Optic Q-Switches

A 'Stallion' version of our industry standard water cooled Acousto-optic Q-Switch, for use in high power lamp or diode pumped Nd:YAG lasers.

The patent pending 'Stallion' manufacturing technique provides superior corrosion resistance whilst maintaining optimum performance and RF power handling capabilities up to 100W.

Combining top grade fused silica with high quality optical finishing and in-house anti-reflection coatings. this Q-Switch exhibits very low insertion loss and high damage threshold.

In addition to the standard product shown, custom configurations are available for specialized

applications. These include alternative housing options,

wavelengths and RF frequencies.

#### **Key Features:**

- Industry standard for Nd:YAG lasers
- Superior corrosion resistance
- Stainless steel cooling channels
- High damage threshold
- Push fit water-connectors
- Up to 100W RF power handling
- Custom configurations available

#### Applications:

- Material processing:
- Laser marking
- Laser engraving
- Laser cutting
- Laser drilling
- Medical (surgery)
- Lithography

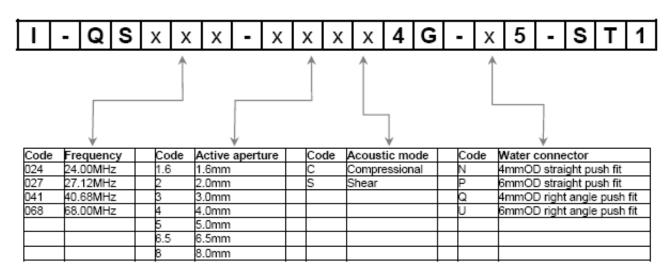
General Specifications: Interaction material: Wavelength:





AR coating reflectivity: Damage threshold: < 0.2% per surface > 1GWcm-2

Transmission (single pass): > 99.6%


Static insertion loss: ≤ 6% at 50W laser power

VSWR: < 1.2:1 (<1.4:1 at 50W RF power)

RF power rating: 100W CW (max) Water flow rate: > 190cc / minute Water-cooling channel material: Stainless steel 316 Recommended water temperature: +22°C to +32°C Thermal switch cut-off: +55°C +/- 5°C

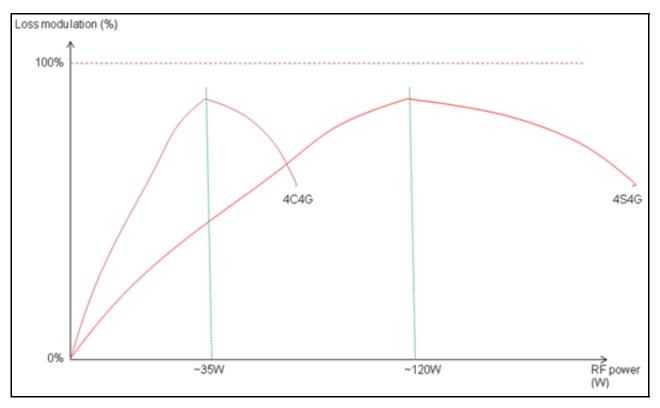
#### **Ordering Codes**

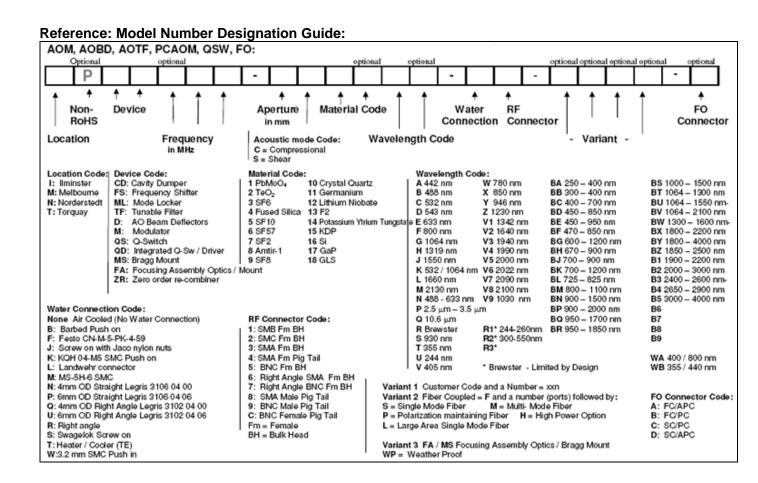
Example: I-QS027-4S4G-N5-ST1 (Q-Switch, 27.12MHz, 4mm active aperture, shear mode, fused silica, 1064nm, 4mm OD straight push fit water-connectors, BNC, Stallion housing with M3 mounting holes)



## How to Find the Replacement of the Used/damaged Q-switch

- 1. To find the frequency of the RF driver (Q-switch driver).
- 2. To find the diameter of the YAG rod or laser beam diameter from the laser head. In general, the aperture of the Q-switch is 1mm larger than the YAG rod diameter.
- 3. If there is no polariser inside the laser resonator and the laser beam is non-polarised, acoustic mode S should be used. Otherwise, acoustic mode C is used in polarised laser beam. (Remark: the above recommendation is not 100% true. We have found that acoustic mode S is also used in polarised lasers and it operates well. Acoustic mode C is also used in non-polarised lasers and it operates well too.)
- 4. Then to select a suitable water connector. Please note that you can use your own water connector to replace/change the connector since the connector is screwed. For example, if the damaged Qswitch has B-connector and you have a new Q-switch with S-connector, you can take away Bconnector from the damaged Q-switch and then install this B-connector into your new Q-switch replacing its S-connector.


## RF Power for Q-switches:


The following table shows the RF powers required at the theoretical peak loss modulations for Qswitches:

| Aperture size | Compressional peak RF power | Shear peak RF power |
|---------------|-----------------------------|---------------------|
| 2mm           | ~20W                        | ~60W                |
| 3mm           | ~25W                        | ~90W                |
| 4mm           | ~35W                        | ~100W               |
| 5mm           | ~50W                        | ~100W               |

Remark: the maximum allowed RF input is 100W only.









# Comparison between Standard QS Series Q-switches and Stallion Q-switches

| Stallion, I-QS27 series                                                         | Old QS27-xx-x series                                                                                                                |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Water-cooling pad still made of Aluminum to avoid corrosion (prevent oxidation) | Water-cooling pad is made of Aluminum, no coating. This is very easy to cause corrosion.                                            |
| Inner water-duct is having 3.5mm diameter by coating with stainless steel       | Inner water-duct is having 2.5mm diameter                                                                                           |
| Same dimension and screw hole position as QS27 series                           |                                                                                                                                     |
| Screw is using international standard, M3                                       | Screw is using old UK standard                                                                                                      |
| Water-connector is having choice of right-angle and straight through            | Only straight through version                                                                                                       |
| Water-connector is having 4mm or 6mm diameter selection                         |                                                                                                                                     |
| Using laser marking for the serial number on the housing (un-erasable)          | Using sticker to label part number and serial number that is very easy to erase even by hand (erasable of the device's information) |

## New part number of Stallion versus the older model :

| Stallion Q-switch series | Old Q-switch series |
|--------------------------|---------------------|
| I-QS27-5S4G-U5-ST1       | QS27-5S-x           |
| I-QS27-3S4G-U5-ST1       | QS27-3S-x           |
| I-QS27-5C4G-U5-ST1       | QS27-5C-x           |
| I-QS27-4S4G-U5-ST1       | QS27-4S-x           |



Comparison between Stallion and old Q-switches. The main difference of the outlooks is water connector.



# AO Q-Switch at Other Wavelengths

| Model No.               | QS027-4J-xxx                        | I-QS027-5S4Y-x5-ST1                 |
|-------------------------|-------------------------------------|-------------------------------------|
| Interaction material    | Fused Silica (Infrasil, water-free) | Fused Silica (Infrasil, water-free) |
| Wavelength              | 1550nm                              | 946nm                               |
| AR coating reflectivity | < 0.2% per surface at 1550nm        | < 0.2% per surface at 1550nm        |
| Damage threshold        | > 500MWcm-2                         | > 1GWcm-2                           |
| Polarisation            | Random                              | Random                              |
| Interaction length      | 46.0mm                              | 46.0mm                              |
| RF frequency            | 27.12MHz                            | 27.12MHz                            |
| VSWR                    | < 1.2 1                             | < 1.2 1                             |
| Acoustic Mode           | Shear                               | Shear                               |
| Active aperture         | 1.6mm                               | 5.0mm                               |
| Clear aperture          | 8.0mm                               | 8.0mm                               |
| Loss modulation         | > 70% at 50W; > 85% at 100W         | > 75%                               |
| Housing                 | Standard QS27-xx-xxx                | Stallion                            |
| Water connectors        | Barbed or Screw fit                 | Push fit                            |

| Model No.               | I-QS041-3C4H-x5-ST1                | QS027-4H-xxx                       |
|-------------------------|------------------------------------|------------------------------------|
| Interaction material    | Fused Silica(Infrasil, water-free) | Infrasil (water-free fused silica) |
| Wavelength              | 1319 - 1342nm                      | 1319-1342nm                        |
| AR coating reflectivity | < 0.2% per surface at 1319-1342nm  | < 0.2% per surface                 |
| Damage threshold        | > 1000MWcm-2                       | > 1000MWcm-2                       |
| Polarisation            | Linear (vertical to base))         | Linear (vertical to base)          |
| Interaction length      | 46.0mm                             | 46.0mm                             |
| RF frequency            | 40.68MHz                           | 27.12MHz                           |
| VSWR                    | < 1.2 1                            | < 1.2 1                            |
| Acoustic Mode           | Compressional                      | Compressional                      |
| Active aperture         | 3.0mm                              | 5.0mm                              |
| Clear aperture          | 8.0mm                              |                                    |
| Loss modulation         | ~ 85% at 40W RF power              | > 80% at 50W RF power              |
| Housing                 | Stallion                           | Standard QS24/27-xx-xxx            |
| Water connectors        | Push-fit                           | Barbed                             |

| Model No.               | QS027-4G/M-xxx                                               | QS027-4C/G-xxx           |
|-------------------------|--------------------------------------------------------------|--------------------------|
| Interaction material    | Infrasil (water-free fused silica)                           | Fused Silica             |
| Wavelength              | 1064nm / 2128nm                                              | 532/1064nm               |
| AR coating reflectivity | < 0.2% per surface at 1064nm<br>< 0.3% per surface at 2128nm | < 0.2% per surface       |
| Transmission:           | > 99.6% at 1064nm<br>> 99.4% at 2128nm                       | > 99.6%                  |
| Damage threshold        | > 500MW/cm2                                                  | > 500M W/cm <sup>2</sup> |
| Polarisation            | Linear, vertical to base                                     | Linear, vertical to base |
| Active Aperture:        | 5.0mm                                                        | 4.0mm                    |
| Interaction length      | 46.0mm                                                       | 46.0mm                   |
| RF frequency            | 27.12MHz                                                     | 27.12MHz                 |
| VSWR                    | < 1.2 1                                                      | < 1.2 1                  |
| Acoustic Mode           | Compressional                                                | Compressional            |
| Active aperture         | 5.0mm                                                        |                          |
| Loss modulation         | > 85% at 45W (1064nm)<br>> 75% at 100W (2128nm)              | > 80% at 35W             |
| Rise-time (10-90%):     | 109ns/mm                                                     | 109ns/mm                 |
| Housing                 | Standard QS27-xx-xxx                                         | Standard QS27-xx-xxx     |
| Water connectors        | Barbed or Screw fit                                          | Barbed or Screw fit      |



| Model No.               | QS027-4M-AP1                        | QS027-4H-xxx                        |
|-------------------------|-------------------------------------|-------------------------------------|
| Interaction material    | Fused Silica (Infrasil, water-free) | Fused Silica (Infrasil, water-free) |
| Wavelength              | 1980 - 2050nm                       | 1342 / 1550nm                       |
| AR coating reflectivity | < 0.2% per surface at 1980 -        | < 0.2% per surface at 1342nm        |
|                         | 2050nm                              | < 0.5% per surface at 1550nm        |
| Damage threshold        | > 500MW/cm2                         | > 500M W/cm <sup>2</sup>            |
| Polarisation            | Linear (vertical to base)           | Any                                 |
| Active Aperture:        | 4·0mm                               | 1.6mm                               |
| Interaction length      | 46·0mm                              |                                     |
| RF frequency            | 27.12MHz                            | 27.12MHz                            |
| VSWR                    | < 1.2 1                             | < 1.2 1                             |
| Acoustic Mode           | Compressional                       | Compressional                       |
| Loss modulation         | ~ 55% at 50W (3mm beam diameter)    | 70% at 50W RF power                 |
|                         |                                     | > 85% at 75W RF power               |
| Rise-time (10-90%):     | 109ns/mm                            | 109ns/mm                            |
| Housing                 | Standard QS27-xx-xxx                | Standard QS27-xx-xxx                |
| Water connectors        | Barbed or Screw fit                 | Barbed or Screw fit                 |

| Model No.               | QS027-10M-NL5             | QS041-10M-HI8             |
|-------------------------|---------------------------|---------------------------|
| Interaction material    | Crystal Quartz            | Crystal Quartz            |
| Wavelength              | 2054nm                    | 2053nm                    |
| AR coating reflectivity | < 0.2% per surface        | < 0.2% per surface        |
| Polarisation            | Linear (vertical to base) | Linear (vertical to base) |
| Active Aperture:        | 5mm                       | 2mm                       |
| Interaction length      | 46·0mm                    |                           |
| RF frequency            | 27.12MHz                  | 40.68MHz                  |
| VSWR                    | < 1.2 1                   | < 1.2 1                   |
| Acoustic Mode           | Compressional             | Compressional             |
| Loss modulation         | ~ 80% at 100W             | > 85% at 50W RF power     |
| Rise-time (10-90%):     | 109ns/mm                  | 109ns/mm                  |
| Housing                 | Standard QS27-xx-B        | Standard QS27-xx-B        |
| Water connectors        | Barbed                    | Barbed                    |

| Model No.               | I-QS050-1.4V10M-U5-HI10    | I-QS027-5C4G-x5-SOx      |
|-------------------------|----------------------------|--------------------------|
| Interaction material    | Crystal Quartz             | Fused Silica             |
| Wavelength              | 2053nm                     | 1060-1125nm              |
| AR coating reflectivity | < 0.2% per surface         | < 0.3% per surface       |
| Polarisation            | Linear (vertical to base)  | Linear, vertical to base |
| Active Aperture:        | 1.4mm                      | 5mm                      |
| Interaction length      | 46·0mm                     |                          |
| RF frequency            | 50MHz                      | 27MHz                    |
| VSWR                    | < 1.2 1                    |                          |
| Acoustic Mode           | Very High Efficiency (VHE) |                          |
| Loss modulation         | >95%                       | > 80%                    |
| Housing                 | Stallion                   | Stallion                 |
| Water connectors        | Push in                    | Push in                  |

| Model No.               | I-QS027-4C10V5(BR)-x5-IS6  |
|-------------------------|----------------------------|
| Interaction material    | Crystal Quartz             |
| Wavelength              | 2000-2100nm                |
| AR coating reflectivity | < 0.2% per surface         |
| Optical faces           | Brewster angled (parallel) |
| Polarisation            | Linear (vertical to base)  |
| Active Aperture:        | 4mm                        |
| Interaction length      | 46·0mm                     |
| RF frequency            | 27MHz                      |
| VSWR                    | < 1.2 1                    |



| Loss modulation  | >80%     |  |
|------------------|----------|--|
| Housing          | Stallion |  |
| Water connectors | Push in  |  |

## **Application Notes:**

- The surface of the crystal inside Q-switch should be kept clean and dry. If the surface is contaminated, the surface will easily be burnt due to high power laser beam.
- The cooling water should be de-ionised water or distilled water for QS series Q-switches. Please do not use city water as cooling water. Otherwise, the cooling channels will be corrupted and then the Q-switch will be damaged.
- The damage caused by non-proper use is not within the warranty.

## 2. Super Q-Switch (SQS)

- High efficiency
- For unpolarised, high power, high gain lasers
- 2 x 50W RF power handling

A new compressional mode, water-cooled, AO Q-Switch designed for use in high power unpolarised lasers giving faster switching, better pulse-to-pulse stability and higher power densities. Enhance your systems performance with greater punch and increased power, specifically for laser processing applications.



Before the Super Q-Switch, some customers were using 2 x Compressional mode Q-Switches (like the QS27-4C-S) in the same cavity. One of the Q-Switches is rotated 90degrees to the other. Because the Compressional mode Q-Switch is more efficient for polarised light, the first Q-Switch would block one polarisation & the second Q-Switch blocks the other. This is a good solution, but takes a large space in the cavity. The Super Q-Switch gives the same performance as using 2 x Compressional Q-Switch, but they are incorporated into 1 device.

This Q-switch uses a dual channel driver to operate two orthogonal compressional mode transducers bonded to a single monolithic optical cell and mounted in one convenient housing. Our proprietary bonding techniques and power handling technology allows this device to operate up to 50W per channel giving an efficient, compact, single device for the next generation of high power, high gain, solid state lasers.

(1) QS2x-xD-x-xxx

| (I) QOZX XD X XXX               |                                   |
|---------------------------------|-----------------------------------|
| Interaction Material            | Fused Silica                      |
| Wavelength                      | 1047 to 1064nm                    |
| Anti-Reflection Coating         | < 0.2% per surface                |
| Damage Threshold                | > 500MWcm-2 (1GWcm-2 typical)     |
| Transmission (single pass)      | > 99.6%                           |
| Frequency                       | 24.00 or 27.12MHz                 |
| VSWR                            | < 1.2:1 (50. input impedance)     |
| Active Aperture                 | 1.6, 2, 3, 4, 5 or 6.5mm2         |
| Clear Aperture                  | 9 x 9mm                           |
| Acoustic Mode                   | Compressional (Orthogonal)        |
| Rise-Time / Fall-Time           | 109ns/mm                          |
| RF Power Rating                 | 2 x 50W CW                        |
| Water Flow Rate                 | 190cc / minute, minimum           |
| Maximum Water Temperature       | +40°C (recommended, 22°C to 32°C) |
| Water Connectors                | Screw-fit or Barbed (push-on)     |
| Thermal Switch Cut-Off          | +55°C ± 5°C                       |
| Housing / Flow Chamber Material | Aluminium HE30TF                  |
|                                 |                                   |



## (2) I-QS027-6.5D10G-B5

| Model No:                     | I-QS027-6.5D10G-B5        |  |  |  |
|-------------------------------|---------------------------|--|--|--|
| Device:                       | AO Q-Switch               |  |  |  |
| Interaction material:         | Crystal Quartz            |  |  |  |
| Wavelength: Damage threshold: | 1064nm > 1GW/cm2          |  |  |  |
| AR coating reflectivity:      | < 0.2% per surface        |  |  |  |
| Transmission:                 | > 99.6%                   |  |  |  |
| Frequency:                    | 27.12MHz                  |  |  |  |
| VSWR:                         | < 1.3:1 at 0dBm           |  |  |  |
| Optical polarisation:         | Random                    |  |  |  |
| Active aperture:              | 6.5mm                     |  |  |  |
| Acoustic mode:                | Compressional, dual       |  |  |  |
| Rise-time (10-90%):           | 113ns/mm                  |  |  |  |
| Loss Modulation:              | > 90% at 40W RF / Channel |  |  |  |
| Maximum RF power:             | 50W per channel           |  |  |  |
| Cooling:                      | Water                     |  |  |  |
| Thermal switch cut-off:       | 65°C ± 5%                 |  |  |  |
| Water connectors:             | Barbed                    |  |  |  |
| Housing material:             | Aluminium                 |  |  |  |
| Temperature range:            | -20°C to +70°C            |  |  |  |

## **Driver Selection**

N390xx-yyDMzzz-2CH

- Aperture size 1.6D, 2D or 3D, use 25W dual channel driver
- Aperture size 4D, 5D or 6.5D, use 50W dual channel driver

## RF Power for Super QS & VHE QS:

The following table shows the RF powers required at the theoretical peak loss modulations for FS (Fused Silica) and CQ (Crystal Quartz) SQS (24/27MHz) and VHE devices (68MHz).

| Aperture size / | Approximate φ | FS SQS    | CQ SQS | FS VHE     | CQ VHE     |
|-----------------|---------------|-----------|--------|------------|------------|
| mm              | / mm          | / W       | / W    | / W        | / W        |
| 1.6             | 1             | ~15       | ~10    | ~55        | ~40        |
| 2               | 1.5           | ~20       | ~15    | ~70        | ~50        |
| 3               | 2             | ~25       | ~20    | ~100 (max) | ~70        |
| 4               | 2.5           | ~35       | ~25    | -          | ~90        |
| 5               | 3.5           | ~45       | ~30    | -          | ~100 (max) |
| 6.5             | 5             | ~50 (max) | ~40    | -          | -          |

All values are for 1064nm, SQS (super Q-switch) values stated are per channel.

#### 3. VHE Q-Switch

I-QS068-xxxV10G-x5-ST3 (QS68-xV-x-xxx)

- Very High Efficiency > 95%
- Unique patent-pending acousto-optic design
- Includes 'Sure-Flow' technology
- · For linearly polarised lasers

The VHE acousto-optic Q-Switch is ideal for use in high-gain, high-power, linearly polarized Nd:YAG & Nd:YVO4 lasers. Thanks to a special design it provides up to 96% single-pass loss modulation (compared to ~85% from conventional designs).

This astonishing performance is achieved inside the industrystandard package, allowing simple integration into existing cavity configurations.



Incorporating our special 'Sure-Flow' corrosion resistant treatment, which allows confident, efficient



water-cooling, the VHE Q-Switch can handle up to 100W of RF power.

| Interaction Material       | Fused Silica                           |
|----------------------------|----------------------------------------|
| Wavelength                 | 1047 to 1064nm                         |
| Polarisation               | Linear, vertical to base               |
| Anti-Reflection Coating    | < 0.2% per surface                     |
| Damage Threshold           | > 1GWcm-2 (2GWcm-2 typical)            |
| Transmission (single pass) | > 99.6%                                |
| Frequency                  | 68MHz                                  |
| VSWR                       | < 1.21 (50Ω input impedance)           |
| Active Aperture            | 1.6, 2, 3, or 4mm                      |
| Rise-Time / Fall-Time      | 109ns/mm                               |
| Loss Modulation            | > 95% (single pass)                    |
| Beam Separation            | 12mrad                                 |
| Acceptance Angle           | 5mrad                                  |
| RF Power Rating            | 100W CW                                |
| Water Flow Rate            | 190cc / minute, minimum                |
| Maximum Water Temperature  | +40°C (recommended, 22°C to 32°C)      |
| Water Connectors           | Screw-fit or Barbed (push-on)          |
| Thermal Switch Cut-Off     | +55°C ±5°C                             |
| Housing Material           | Aluminium, with 'Sure-Flow' technology |
| Driver Model               | A253-yy or A253-zz                     |

## The VHE Q-Switch: Pushing the boundaries further

Q-Switching is a method frequently used to obtain short laser pulses of enhanced power. However, improvements in laser technology have lead to the situation where the maximum loss modulation provided by conventional Q-Switches is insufficient to hold off the laser output.

## That was then: Alignment of two Q-Switches

For high-gain unpolarised systems, the Gooch & Housego Super Q-Switch is available but until now, there was only one way to provide the loss modulation needed to successfully Q-Switch highgain linearly-polarised systems. This was to fit two Q-Switches in series to provide sequential depletion of the zeroth order beam. Orientation of these two devices is crucial since any rediffraction of the first order rays back into the zeroth order will significantly reduce the loss modulation. Misalignment of the two Q-Switches could even result in a lower loss modulation than a single Q-Switch on its own.

Rediffraction is not the only drawback associated with using two Q-Switches. The relative phase of the acoustic modulation must also be considered if timing jitter is to be avoided. The increase in cavity length associated with fitting two Q-Switches will mean the pulse width will be increased. Two Q-Switches will place four optical faces into the laser cavity leading to increased insertion loss and multiple reflections. Each of the two Q-Switches must be carefully aligned at the Bragg angle while simultaneously avoiding rediffraction losses and of course two Q-Switches will require extra plumbing for the water cooling system and RF drivers.

## This is now: A Q-Switch with >95% loss modulation

Understanding the challenges laser engineers face, Gooch & Housego has developed the VHE Q-Switch. Designed for use in high-gain, high-power, linearly-polarised Nd:YAG and Nd:YVO4 lasers, the patent-pending design provides better than 95% single-pass loss modulation, compared to ~85% from conventional designs. This outstanding performance is achieved inside the industrystandard package which allows simple integration into existing cavity configurations.

The rediffraction problem has been solved by careful alignment of the acoustics within the structure. At certain incidence angles, a laser beam will not be diffracted by an acoustic beam. These angles are built into the VHE Q-Switch which ensures that light cannot be diffracted back into the zeroth order.

This design greatly simplifies the alignment procedure and simultaneously achieves >95% loss modulation. The VHE Q-Switch uses a single RF driver so timing jitter from a phase mismatch



between two Q-Switches is eliminated.

The VHE Q-Switch from Gooch & Housego has been designed to allow laser engineers to push the boundaries that little bit further.

## 4. Q-Switch used in DPSS lasers

## 4.1 QS041-10G-xxyy series Q-switches

- DPSS Nd:YAG / Nd:YVO4, linearly polarized
- Compact conduction cooled, crystal quartz
- 2mm active aperture

A compact, conduction-cooled, acousto-optic Q-Switch for use in DPSS Nd:YAG & Nd:YVO4 lasers. Utilising the same manufacturing technology as our industry standard, high power QS24/27 series, these compact devices offer unrivalled reliability through superior optical quality and coatings.

Optimised for use with linearly polarised beams of up to 1.6mm diameter, offering loss modulation figures exceeding 85%. Utilising Crystal Quartz as the interaction material to give increased efficiency and high thermal transfer properties allowing use at RF powers of up to 15W, conduction-cooled.

This Q-Switch can also be customised to feature alternative frequencies, active apertures and housing designs, our team of scientists will be pleased to discuss variations with you.

| Model Number               | QS041-10G-SO3                         | QS041-10G-IN2            |  |  |  |
|----------------------------|---------------------------------------|--------------------------|--|--|--|
| Interaction Material       | Crystal Quartz                        |                          |  |  |  |
| Wavelength                 | 1047 to 1064nm                        |                          |  |  |  |
| Polarisation               | Linear, vertical to base              | Linear, vertical to base |  |  |  |
| Anti-Reflection Coating    |                                       | er surface               |  |  |  |
| Damage Threshold           | > 1G <sup>1</sup>                     | Wcm <sup>2</sup>         |  |  |  |
| Transmission (single pass) | > 99                                  | 9.6%                     |  |  |  |
| Frequency                  | 40.68                                 | BMHz                     |  |  |  |
| VSWR                       | < 1.2:1 (50 $\Omega$ input impedance) |                          |  |  |  |
| Active Aperture            | 1.6mm                                 | 1.8mm                    |  |  |  |
| Acoustic Mode              | Compressional                         |                          |  |  |  |
| Rise-Time / Fall-Time      | 109ns/mm                              | 113ns/mm                 |  |  |  |
| Loss Modulation            | > 85%                                 | > 85%                    |  |  |  |
| Beam Separation            | 7.3n                                  | nrad                     |  |  |  |
| Acceptance Angle (full)    | 6.1n                                  | nrad                     |  |  |  |
| RF Power Rating            | 20W                                   | CW                       |  |  |  |
| Cooling                    | Conduction through base               |                          |  |  |  |
| Dimension                  | 35x35x24mm                            | 39.5x35x22mm             |  |  |  |
| Q-switch driver            | R39041-20DMFPS-SC                     |                          |  |  |  |

| Model No                | I-QS041-1.8C10G-4-GH21<br>(QS041-10G-GH21) | I-QS041-1.6C10G-4-SO6    |
|-------------------------|--------------------------------------------|--------------------------|
| Device                  | AO Q-Switch                                | AO Q-Switch              |
| Interaction material    | Crystal Quartz                             | Crystal Quartz           |
| Wavelength              | 1047 to 1064nm                             | 1064nm                   |
| Damage threshold        | > 1GW/cm <sup>2</sup>                      | > 1GW/cm <sup>2</sup>    |
| AR coating reflectivity | < 0.2% per surface                         | < 0.2% per surface       |
| Transmission            | > 99.6%                                    | > 99.6%                  |
| Frequency               | 40.68MHz                                   | 40.68MHz                 |
| Optical polarisation    | Linear, vertical to base                   | Linear, vertical to base |
| Active aperture         | 1.8mm                                      | 1.6mm                    |
| Acoustic mode           | Compressional                              | Compressional            |



| Rise-time (10-90%) | 113ns/mm  | 113ns/mm  |
|--------------------|-----------|-----------|
| Loss Modulation    | ≥ 85%     | ≥ 85%     |
| RF Power           | 20W (Max) | 20W (Max) |

Remark: The main difference of the above Q-switches is the dimensions.

| Model No             | QS041-10M(BR)-HI5        |  |
|----------------------|--------------------------|--|
| Device               | AO Q-Switch              |  |
| Interaction material | Crystal Quartz           |  |
| Wavelength           | 2090 nm                  |  |
| Damage threshold     | > 1GW/cm <sup>2</sup>    |  |
| Optical faces        | Brewster angled          |  |
| Transmission         | > 99.6%                  |  |
| Frequency            | 40.68MHz                 |  |
| Optical polarisation | Linear, vertical to base |  |
| Active aperture      | 1.8mm                    |  |
| Interaction length   | 28mm                     |  |
| Acoustic mode        | Compressional            |  |
| Beam separation      | 14.9mrad                 |  |
| Rise-time (10-90%)   | 113ns/mm                 |  |
| Loss Modulation      | ≥ 45%                    |  |
| RF Power             | 20W (Max)                |  |

## 4.2 Air-cooled Q-switch QS068-4J-xxx

## 4.3 Air-cooled Q-switch QS080-2G-3D1

- DPSS systems, polarisation insensitive
- · Miniature size, conduction-cooled
- 1.0mm active aperture

We present probably the smallest, conductioncooled, acousto-optic Q-Switch currently in production anywhere in the world. Specifically designed for use in miniature, short-pulse, low power, DPSS lasers, the tiny size of this device facilitates Q-Switching of the shortest cavities.

Utilising a highly efficient crystalline interaction material, greater than 85% loss modulation can





on!

Operating at 80MHz carrier frequency, the diffracted beams are sufficiently separated for most short cavities and pulse repetition rates of 100kHz or more are possible.

| Interaction Material       | Tellurium Dioxide            |
|----------------------------|------------------------------|
| Wavelength                 | 1047 to 1064nm               |
| Polarisation               | Insensitive                  |
| Anti-Reflection Coating    | <0.2% per surface            |
| Damage Threshold           | >10MWcm-2                    |
| Transmission (single pass) | >99.5%                       |
| Frequency                  | 80MHz                        |
| VSWR                       | <1.2:1 (50Ω input impedance) |
| Active Aperture            | 1.0mm                        |
| Clear Aperture             | 1.4mm                        |
| Acoustic Mode              | Compressional                |
| Rise-Time / Fall-Time      | 153ns/mm                     |
| Loss Modulation            | >85% at 3W (typical)         |
| Beam Separation            | 20mrad                       |
| Acceptance Angle (full)    | 12mrad                       |
| RF Power Rating            | 3W, CW                       |
| Cooling                    | Conduction through base      |
| RF Driver                  | R39080-3DMzzz-SC             |

## **Frequently Asked Questions**

## Which parameters do I need to specify if I want to order a Q-Switch?

You will need to specify the frequency, aperture, acoustic mode and the type of water connector.

## Which frequency should I use?

The answer depends on your location. There are various regulatory bodies (for example the ITU) that stipulate the maximum levels of RF radiation that can be emitted in certain frequency bands. The Q-Switch drive frequency is usually chosen to be within one of the permitted bands for the country in which it will operate. Historically, 24.0MHz has been the chosen frequency in the USA and Japan and 27.12MHz in Europe and elsewhere. However, this has been less rigidly observed in recent years and 27.12MHz is now used widely in the USA.

## What is the difference between clear aperture and active aperture?,

The clear aperture of a Q-Switch is defined by the size of the block of silica in which the light and interact. For the QS24/27 Series the minimum clear aperture is 9mm. The active aperture is defined by the height of the acoustic beam inside the silica block. This is the dimension that matters when specifying a Q-Switch.

#### How do I select the appropriate aperture for my application?

As a rule of thumb, the active aperture of the Q-Switch should be the same as the beam diameter of the laser at the point where the Q-Switch will be located. If the gain of the laser is modest it may be possible to use a Q-Switch with an active aperture one size smaller than the actual beam diameter (e.g. a 3mm active aperture Q-Switch in a laser with a 4mm diameter rod). This has the advantage of requiring lower RF drive power (drive power scales linearly with active aperture), which means less heat input and consequently greater efficiency and improved beam quality. It may even mean a lower cost driver can be used. On the downside, alignment of the Q-Switch in the cavity may be more critical.

#### Which acoustic mode would suit me best?

The choice is between shear (S) mode and compressional (C) mode (also known as longitudinal mode). If your laser is unpolarised you should choose shear mode. For polarised systems better results (less RF power = lower cost driver, less heat = better beam quality) will be obtained by using a compressional mode Q-Switch.



#### Which water connector should I choose?

The choice is between screw-on (S) connectors with a nut and olives which grip the outside of the flexible tubing, and barbed (B) push-on connectors, which grip the inside of the flexible tubing. There is little to choose between the two and it usually depends what type of pipe fitting is used as standard in the laser system. Overall the push-on fittings are probably best because there is no danger of them restricting the water flow. (The olives in the screw-on type can constrict the softwall tubing usually used in laser systems.)

## How do I know that the Q-Switch is not over-heating?

The Q-Switch is fitted with a thermal interlock. If, for example, the cooling water fails it will shut down the driver when the temperature reaches 50 degrees C, preventing damage to the Q-Switch.

## What is the optimum operating temperature of the Q-Switch?

The temperature should be set slightly above ambient to prevent the possibility of condensation forming on the optical surfaces of the Q-Switch. Around 32 degrees C is typical. For optimum performance and lifetime we do not recommend operating the Q-Switch at temperatures above 40 degrees C.

## How do I know that the QS24/27 Series Q-Switch is the best choice for my application?

Please call one of our engineers if you are in any doubt about which Q-Switch to use. The QS24/27 Series Q-Switches are 'industry standard' devices that have been developed and refined over many years. As a result they are very reliable and because they are manufactured in large quantities they are lower cost than some of the more specialised products we can offer. Basically, if you have a lamp-pumped industrial or medical Nd:YAG laser this is probably the Q-Switch for you. It is also suitable for the latest generation of high-power industrial diode-pumped lasers.

## I am designing a compact laser and the QS24/27 Series Q-Switch is too large. What should I do?

G&H manufacture a range of standard compact Q-Switches that may be suitable for your application. If not, we have considerable experience of designing application-specific Q-Switches. We supply Q-switches to many of the leading diode-pumped laser manufacturers and it is likely that we will have a design that can easily be adapted to suit your requirements.

## I have a single-mode polarised laser. Will the QS24/27 Series Q-Switch be suitable?

Yes. You can use a compressional mode version with a small active aperture (3mm or less). However, you may find that the integrated Q-switch, with its integral RF driver is a more cost effective solution that also offers performance advantages in terms of higher average Q-Switched output power.

## How much laser power can I hold off?,

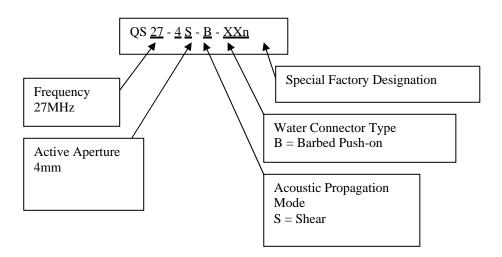
It depends on the design of your laser cavity, where the Q-Switch is placed in it and so on. Hold-off is not a parameter of the Q-Switch alone, but of the Q-Switch/laser combination. We can however determine the extra-cavity loss modulation of the Q-Switch, which is a direct measure of its effectiveness at blocking the laser beam.

## I have a high gain laser and need the maximum possible loss modulation. How do I achieve this?,

There are two ways; by using two compressional mode Q-Switches in series and orientated such that the acoustic beams are orthogonal to each other you can obtain a high, polarisation insensitive. loss modulation with minimum RF drive power. Also available is a newly developed Q-Switch incorporating two orthogonal compressional mode transducers in a single monolithic cell and mounted in one convenient housing. A dual channel RF driver is available for both applications.

## Can I trust the damage threshold quoted in the data sheet?

Yes. We periodically send a sample Q-Switch to a NIST certified test house to have the optical damage threshold verified. G&H take the utmost care in the polishing of the optical surfaces and in their preparation and coating. All these operations are carried out in-house in order to have total control of the process.






## **Acousto-Optic Q-Switch Selection Guide**

When choosing a Q-switch there are a number of user definable parameters which can be selected in order to give the optimum performance in a specific laser system.

Here is an example part number for an industry standard type Q-switches.



## **Operating Frequency** QS27-4S-B-XXn

24MHz and 27MHz have historically been the standard frequencies for A-O Q-switching in lamppumped 30W to 100W Nd:YAG (1064nm) laser systems.

For the shorter cavities employed in DPSS Nd:YAG systems higher RF frequencies, such as 41MHz and 68MHz, have been introduced because they are more effective than the lower frequencies in shorter cavities. This is because the larger acousto-optic deflection angles at the higher drive frequencies are more efficient in dumping optical energy from a shorter cavity.

## Active Aperture QS27-4S-B-XXn

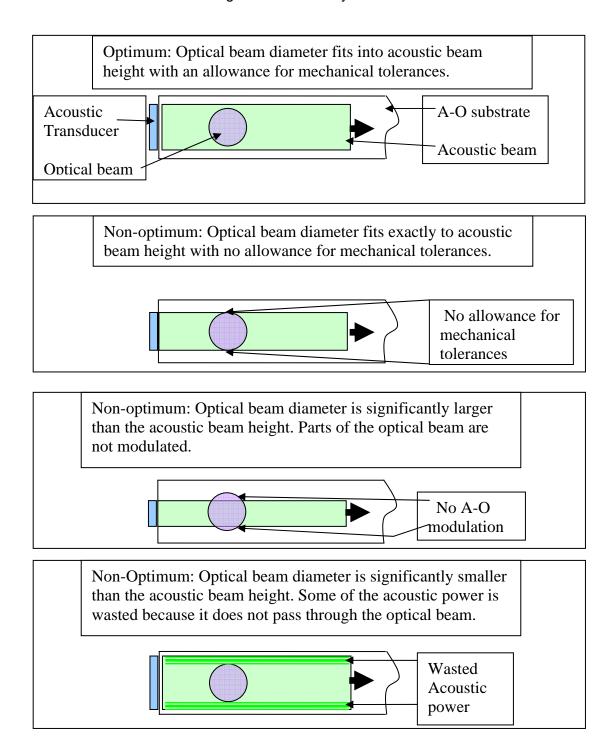
This number defines the effective vertical height (in mm) of the acoustic beam which causes the Qswitch to operate. Standard apertures are 1, 1.6, 2, 3, 4, 5, 6.5 and 8mm.

Only that part of the optical beam passing through this region will be modulated.

There are a number of important factors when selecting the active aperture.

- 1. For high efficiency (defined as maximum loss modulation at lowest possible RF power) you should choose an active aperture as close as possible to the size of your optical beam. Acoustic energy which does not flow through the region of the Q-switch carrying the optical beam is not effective in modulating the laser. This acoustic power is wasted making the device less efficient.
- 2. If the optical beam is larger than the active aperture the regions of the optical beam falling outside of the active aperture will not be modulated.
- 3. For ease of alignment of the Q-switch in the laser the active aperture should be slightly larger than the optical beam. This allows for mechanical tolerances in the laser assembly.

For example if you have a 1.7mm diameter laser then a -2 Q-switch would be appropriate (2mm active aperture, just a little larger than the optical beam diameter).




The following diagrams illustrate this in more detail, showing the effect of changing the active acoustic aperture for a fixed optical beam height. In most applications the laser system designer knows the optical beam properties and should select a Q-Switch with suitable active aperture dimensions as shown below.

The active acoustic aperture is defined in the Q-Switch part number.

The optical beam must pass through the acousto-optic cell in the region that carries the acoustic beam. The optical beam diameter shown in the diagrams represents the 1/e<sup>2</sup> diameter.

All diagrams show the relationship between the optical and acoustic beams when viewed in the direction of propagation of the optical beam. The acoustic wave originates at the transducer shown on the left and travels to the right as indicated by the arrow.





Acoustic Mode QS27-45-B-XXn

There are three different configurations of acoustic wave which can be launched into the Acousto-Optic device to effect optical beam modulation.

- 1. Shear waves have the advantage of effecting all polarisations of light equally and are recommended for use in un-polarised lasers. Q-switches using this acoustic mode are defined by the letter S after the active aperture. (see **Note a.** below)
- 2. Compressional waves (defined by the letter C after the active aperture) exhibit higher efficiency than shear waves when the laser is linearly polarised (optical polarisation perpendicular to the base of the Q-switch). As such compressional wave devices are preferred for polarised lasers and will require less RF drive power than the equivalent shear wave device. (see **Note** a. below)
- 3. Two orthogonal compressional waves. For high power un-polarised lasers, this acoustic configuration can be used for more efficient modulation than an equivalent shear wave device. Such a dual acoustic channel device is defined by the letter D after the active aperture.

Note a: Although the compressional acoustic wave (defined by -C) does not effect all optical polarisations equally, some QS users have found that they can use a compressional mode device in some specific un-polarised laser application. This is very dependant on the laser design and the end user should determine the usefulness of this mode by trial and error.

Note b: Devices using Crystal Quartz as the A-O interaction medium are only offered as compressional (-C) mode devices. (NOT –S or –D)

The optimum optical polarisation for the crystal Quartz devices is perpendicular to the acoustic propagation direction. These devices have found some application in un-polarised systems. The users should determine the usefulness of this mode in an un-polarised laser by trial and error.

Water Cooling QS27-4S-B-XXn

Q-switches requiring lower RF drive power can often be supplied without water cooling (conduction cooled).

Water cooling is used in devices where the RF power input is significant and it is not possible to extract the resulting thermal load by conduction alone.

The water supply is attached to the Q-switch via a pair of water connectors on the end bulkhead and the user can specify his preferred connector type as part of the Q-switch part number as follows:



S = Screw-on ('Swagelok')



B = Barbed Push-on



## **Examples**

## QS24-5S-S

Operating frequency is 24MHz for use in lamp-pumped Nd:YAG lasers with longer cavities. Active aperture is 5.0mm for use with an optical beam diameter of ~ 4.0mm.

Acoustic mode is shear for use with unpolarised laser systems.

Water connectors are the 'Swagelok' screw-on type.

No special factory designation indicates the G&H industry standard design pictured above (i.e. with no specific custom modifications).



# **Problem Report Form**

Please fill the form and email it to us if there is any problem on using Q-switches. Thank you!

| Report date                                                                                                                                                                                                                                                                    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| User's name                                                                                                                                                                                                                                                                    |  |
| Model of Q-switch                                                                                                                                                                                                                                                              |  |
| S/N                                                                                                                                                                                                                                                                            |  |
| Purchase date                                                                                                                                                                                                                                                                  |  |
| Description of problem (hold-off capability, surface situation, VSWR, water leakage, electrode wires etc)                                                                                                                                                                      |  |
| Description of usage: mainly including 1. water (de-ionised, drinking, mineral, pure or distilled); 2. over-temp and no water protection; 3. laser parameters (wavelength, average power, peak power, beam diameter; 4. Q-switch driver (maker, model, RF power) and 5. others |  |
| Check report by maker                                                                                                                                                                                                                                                          |  |



## Fibre-Q: Fibre-Coupled Acousto-Optic Modulator T-M150-0.4C2G-3-F2S

Gooch & Housego specialises in providing optical components for high power fibre laser and amplifier systems. In-house control of critical manufacturing processes, from crystalline material selection and orientation, cutting, polishing and AR coating through to fibre coupling, ensure our components are of the highest optical quality.

The 'Fibre-Q' Acousto-Optic Modulator is designed for use in pulsed fibre laser amplifier systems. In addition to the standard product shown, custom configurations are available for specialized applications.

## **Key Features:**

- \_ Low insertion loss
- \_ Compact, low profile package
- \_ Rugged hermetic design
- \_ Stable performance
- \_ Custom configurations available

## **Applications:**

- \_ Fibre laser
- \_ Fibre amplifier
- Pulse picker



Interaction material: Tellurium Dioxide

Wavelength: 1060 - 1090nm (other wavelengths available on request)

Average optical power handling:

Peak (pulse) optical power handling: 30kW typical (dependent on pulse width)

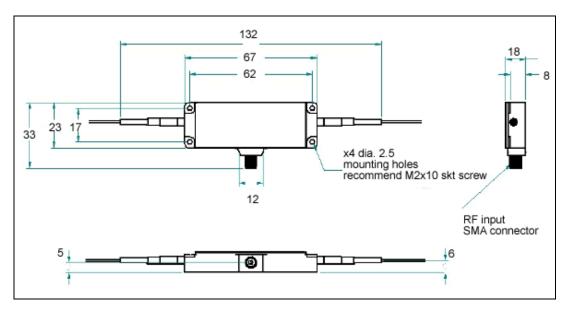
Insertion loss: < 2dB

Return loss: Extinction ratio (1st order on / off) > 40dB (>50dB version available on request) > 50dB

Rise-time / fall-time: 30ns Frequency: 150MHz VSWR: < 1.2:1 Input impedance: 50Ω

Frequency shift: 150MHz (up-shift)

Hi1060 (900µm sleeving, 1.5m length) Fibre type:


Fibre termination: Bare fibre Recommended RF driver: A35150

## **Ordering Code:**

RF power:

Explanation: T-M150-0.4C2G-3-F2S (Modulator, 150MHz, 0.4mm active aperture, compressional mode, Tellurium Dioxide, 1064nm, SMA female bulk head connector, 2 fibre, single mode (Hi1060)

< 2.0W







## Other Q-Switches

The Q-Switches are for use in both industrial and laboratory applications. Q-Switching is used principally on high peak power solid state Nd:YAG lasers at 1.06 micrometer wavelength. The Q-Switches are divided into three categories: for use with multi-mode, un-polarized lasers, with beam sizes 5mm and larger; for use with miniature, polarized or un-polarized, solid state diode pumped lasers; and single mode, polarized, low divergence solid state lasers, with beam size of 1 to 2 mm.

**High Power Q-Switches for random polarized lasers:** 

| Spectral<br>Range (nm) | Q-Switch Model     | Recommended<br>Driver Model<br>Number | Loss<br>Modulation<br>(%@Watts)<br>@1064nm<br>Polarization | Active<br>Aperture<br>(mm) | Center<br>Frequency<br>(MHz) | Rise Time<br>(ns / mm<br>beam dia.) | Optical Power<br>Density /(cm2)<br>Ave./Pk | Interaction<br>Material |
|------------------------|--------------------|---------------------------------------|------------------------------------------------------------|----------------------------|------------------------------|-------------------------------------|--------------------------------------------|-------------------------|
| 10.6um                 | 37027-3            | 39027-<br>30DSA05                     | 85 @ 30                                                    | 3                          | 27.12                        | 120                                 | 500                                        | Ge                      |
| 10.6um                 | 37027-5            | 39027-<br>30DSA05                     | 75 @ 30                                                    | 5                          | 27.12                        | 120                                 | 500                                        | Ge                      |
| 1064                   | 32024-50-4         | 39024-50DS<br>39024-50DM              | 55 @ 50<br>Random                                          | 4 x 13                     | 24                           | 175                                 | 50KW/500MW                                 | Fused Silica            |
| 1064                   | 32027-50-4         | 39027-50DS<br>39027-50DM              | 55 @ 50<br>Random                                          | 4 x 13                     | 27.12                        | 175                                 | 50KW/500MW                                 | Fused Silica            |
| 1064                   | 33024-50-5-I-HGM-W | 39024-50DS<br>39024-50DM              | 70 @ 50<br>Random                                          | 5 x 10                     | 24                           | 115                                 | 50KW/500MW                                 | Crystal Quartz          |
| 1064                   | 33027-50-5-I-HGM-W | 39027-50DS<br>39027-50DM              | 70 @ 50<br>Random                                          | 5 x 10                     | 27.12                        | 115                                 | 50KW/500MW                                 | Crystal Quartz          |
| 1064                   | 33041-50-3-I-HGM   | 39041-50DS<br>39041-50DM              |                                                            |                            |                              |                                     |                                            |                         |
| 1064                   | 32024-70-7         | 39024-70DS<br>39024-70DM              | 55 @ 70<br>Random                                          | 7 x 13                     | 24                           | 175                                 | 50KW/500MW                                 | Fused Silica            |
| 1064                   | 32027-70-7         | 39027-70DS<br>39027-70DM              | 55 @ 70<br>Random                                          | 7 x 13                     | 27.12                        | 175                                 | 50KW/500MW                                 | Fused Silica            |
| 1064                   | 33024-70-7-I-HGM-W | 39024-70DS<br>39024-70DM              | 85 @ 70<br>Random                                          | 7 x 10                     | 24                           | 115                                 | 50KW/500MW                                 | Crystal Quartz          |
| 1064                   | 33027-70-7-I-HGM-W | 39027-70DS<br>39027-70DM              | 85@ 70<br>Random                                           | 7 x 10                     | 27.12                        | 115                                 | 50KW/500MW                                 | Crystal Quartz          |
| 1064                   | 32024-100-4-HGM-W  | 39024-100DS<br>39024-100DM            | 90 @ 50<br>Random                                          | 4 x 13                     | 24                           | 175                                 | 50KW/500MW                                 | Fused Silica            |
| 1064                   | 32027-100-4-HGM-W  | 39027-100DS<br>39027-100DM            | 90 @ 50<br>Random                                          | 4 x 13                     | 27.12                        | 175                                 | 50KW/500MW                                 | Fused Silica            |



**Dual Axis Q-Switches for random polarized lasers:** 

| 1064 | 33027-40-4-XY | 39027-40DS-2CH<br>39027-40DM (2) | 90 @ 40 per<br>channel Random | 4 x 4 | 27.12 | 175 | 50KW/500MW | Fused Silica |
|------|---------------|----------------------------------|-------------------------------|-------|-------|-----|------------|--------------|
|------|---------------|----------------------------------|-------------------------------|-------|-------|-----|------------|--------------|

Low Power Q-Switches for polarized or random polarized lasers:

| Low Power & Switches for polarized of random polarized lasers. |                       |                                       |                                                        |                            |                              |                                    |                                            |                         |
|----------------------------------------------------------------|-----------------------|---------------------------------------|--------------------------------------------------------|----------------------------|------------------------------|------------------------------------|--------------------------------------------|-------------------------|
| Spectral<br>Range (nm)                                         | Q-Switch Mode         | Recommended<br>Driver Model<br>Number | Loss Modulation (% @<br>Watts) @1064nm<br>Polarization | Active<br>Aperture<br>(mm) | Center<br>Frequency<br>(MHz) | Rise Time<br>(ns/ mm<br>beam dia.) | Optical Power<br>Density/ (cm2)<br>Ave./Pk | Interaction<br>Material |
| 1064                                                           | 33027-10-1.5-I        | 39027-10DS<br>39027-10DM              | 80 @ 10 Linear<br>Perpendicular<br>65 @ 10 Random      | 1.5                        | 27.12                        | 115                                | 50KW/500MW                                 | Crystal Quartz          |
| 1064                                                           | 33041-10-1.5-I        | 39041-10DS<br>39041-10DM              | 72 @ 10 Linear<br>Perpendicular<br>45 @10 Random       | 1.5                        | 40.68                        | 115                                | 50KW/500MW                                 | Crystal Quartz          |
| 1064                                                           | 33041-20-1.5-I-<br>TB | 39041-<br>20DMFPS-SC                  | 90 @ 20 Linear<br>Perpendicular<br>80 @20 Random       | 1.5                        | 40.68                        | 115                                | 50KW/500MW                                 | Crystal Quartz          |
| 1064                                                           | 33080-10-1-I          | 39080-10DS<br>39080-10DM              | 80 @ 10 Linear<br>Perpendicular<br>60 @ 10 Random      | 1                          | 80                           | 115                                | 50KW/500MW                                 | Crystal Quartz          |
| 1064                                                           | 33027-25-3-BR         | 39027-30DSA05<br>39027-30DMA05        | 75 @ 25 Linear<br>Perpendicular                        | 2                          | 27.12                        | 175                                | 50KW/500MW                                 | Fused Silica            |

Low Power Q-Switches for random polarized lasers:

| Spectral<br>Range (nm) | Q-Switch Model | Recommended<br>Driver Model<br>Number | Loss Modulation<br>(%@Watts) @1064nm<br>Polarization | Active<br>Aperture<br>(mm) | Center<br>Frequency<br>(MHz) | Rise Time<br>(ns / mm)<br>beam dia. | Optical Power<br>Density /(cm2)<br>Ave./Pk | Interaction<br>Material |
|------------------------|----------------|---------------------------------------|------------------------------------------------------|----------------------------|------------------------------|-------------------------------------|--------------------------------------------|-------------------------|
| 1064                   | 34027-1.5-SF10 | 38027-4DS<br>38027-4DM                | 30 @ 2 Random<br>60 @ 4 Random                       | 1.5                        | 27.12                        | 165                                 | 120KW/500MW                                | SF10                    |
| 1064                   | 34041-1.5-SF10 | 38041-4DS<br>38041-4DM                | 20 @ 2 Random<br>40 @ 4 Random                       | 1.5                        | 40.68                        | 165                                 | 120KW/500MW                                | SF10                    |
| 1064                   | 34080-1-SF10   | 38080-4DS<br>38080-4DM                | 20 @ 2 Random<br>40 @ 4 Random                       | 1                          | 80                           | 165                                 | 120KW/500MW                                | SF10                    |



## 32024-50-4

**PARAMETER SPECIFICATION** 

Fused Silica Interactive Material

Acoustic Mode Shear

**Operating Wavelength** 1064 nm

Window Configuration AR "V" Coated

Static Transmission >99 %

Operating Frequency 24 MHz

Insertion Loss <10 % @ 50 Watts Loss Modulation >55 % @ 1064 nm

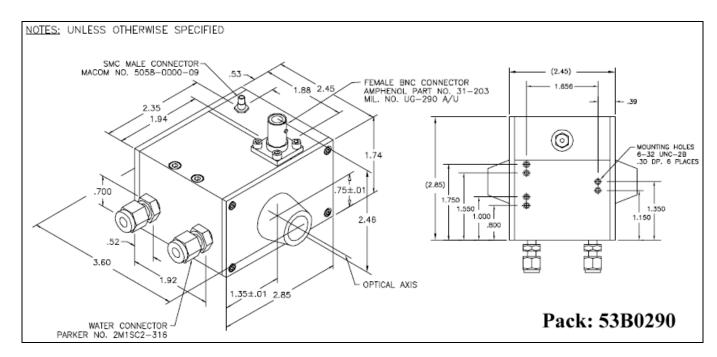
**Light Polarization** Random

Acoustic Aperture Size 4X13 mm

Rise Time 175 ns/mm Beam Diameter

**Deflection Angle** 6.8 mrad RF Power Level 50 Watts 50 Ohms Impedance

Water Cooled 0.1GPM <30°C


**VSWR** 1.2:1 @ 24 MHz

Package 53B00290

Recommended Drivers: Digital Driver System: 39024-50DS\*\*\*

Digital Driver Module: 38024-50DM\*\* or 39024-50DM\*\*\*

Options: \*\* = PK, PKPW \*\*\* = PPK, FPS, A05, R05





## 32027-50-4

**PARAMETER SPECIFICATION** 

Interactive Material Fused Silica

Acoustic Mode Shear

**Operating Wavelength** 1064 nm

AR "V" Coated Window Configuration

Static Transmission > 99 %

Operating Frequency 27.12 MHz

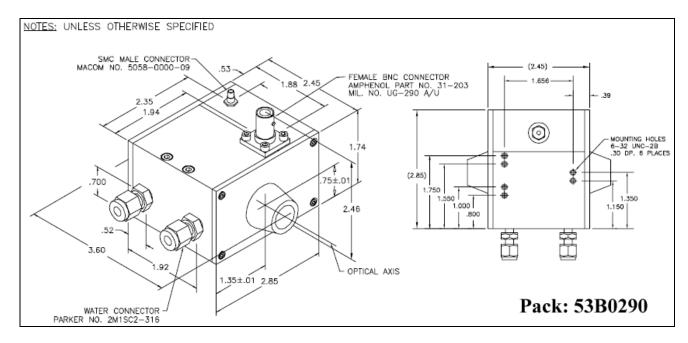
Insertion Loss <10 % @ 50 Watts Loss Modulation >55 % @ 1064 nm

**Light Polarization** Random

Acoustic Aperture Size 4 X 13 mm

Rise Time 177 ns/mm Beam Diameter

7.67 mrad **Deflection Angle** RF Power Level 50 Watts Impedance 50 Ohms


1.2:1 @ 27.12 MHz **VSWR** 

53B00290 Package:

Cooling: Water Cooled @ 0.1Gallon Per Minute With Water Temperature <300C

Recommended Drivers: Digital Driver System: 39027-50DS\*\*\*

> Digital Driver Module: 38027-50DM\*\* or 39027-50DM\*\*\* Options: \*\* = PK, PKPW \*\*\* = PPK, FPS, A05, R05





## 32027-70-7

**PARAMETER SPECIFICATION** 

Interactive Material Fused Silica

Acoustic Mode Shear

Operating Wavelength 1064 nm

AR "V" Coated Window Configuration

Static Transmission >99 %

Operating Frequency 27.12MHz

Insertion Loss <10 % @ 50 Watts

Loss Modulation >55 %

**Light Polarization** Random

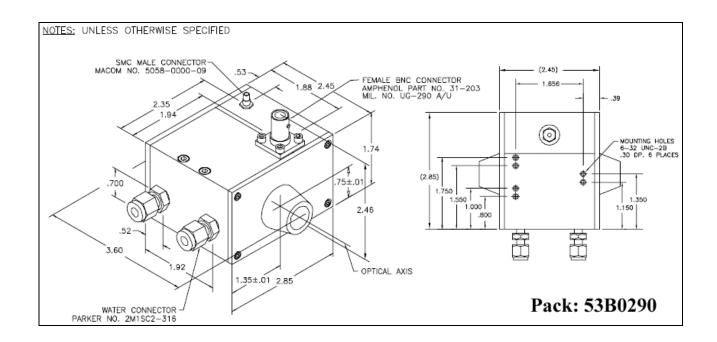
Acoustic Aperture Size 7 X 13 mm

Rise Time 175 ns / mm Beam Diameter

**Deflection Angle** 7.6 mrad **RF Power Level** 70 Watts

Impedance 50 Ohms

**VSWR** <1.2:1 @ 27.12 MHz


Package: 53B00290

Water Cooled 0.1GPM <30oC

Recommended Driver: Digital Driver System: 39027-70DS\*\*\*

Digital Driver Module: 38027-70DM\*\* or 39027-70DM\*\*\*

Options: \*\* =PK, PKPW \*\*\* = PPK, FPS, A05, R05





## 32027-100-4-HGM-W

**PARAMETER SPECIFICATION** 

Interactive Material Fused Silica

Acoustic Mode Shear

Operating Wavelength 1064 nm

AR "V" Coated Window Configuration

Static Transmission >99 %

Operating Frequency 27.12 MHz

Insertion loss <10 % @ 50 Watts

Loss Modulation >90 %

Light Polarization Random

Acoustic Aperture Size 4 X 13 mm

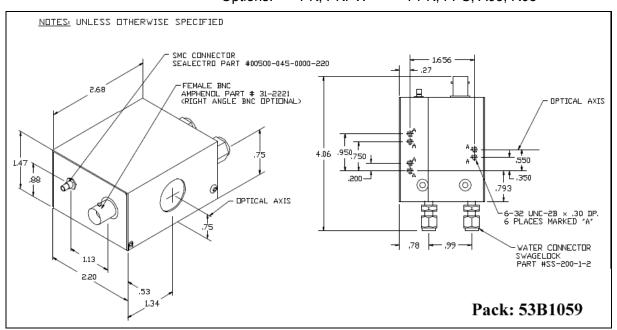
Rise Time 175 ns/mm Beam Diameter

**Deflection Angle** 7.6 mrad **RF Power Level** 100 Watts

Impedance 50 Ohms

**VSWR** 1.2:1 @ 27.12 MHz

53B1059 Package


Water Cooled 0.1GPM <30oC

Optional Package With Cones 53B1186

Recommended Driver: Digital Driver System: 39027-100DS\*\*\*

Digital Driver Module: 38027-100DM\*\* or 39027-100DM\*\*\*

Options: \*\* =PK, PKPW \*\*\* = PPK, FPS, A05, R05





## 33027-50-5-I-HGM-W

**PARAMETER SPECIFICATION** 

Interactive Material Crystal Quartz Acoustic Mode Longitudinal **Operating Wavelength** 1064 nm

AR "V" Coated Window Configuration

Static Transmission >99 % Operating Frequency 27.12 MHz

Loss Modulation >85 % With Linear Polarization Perpendicular to the Acoustic Propagation

>70 % With Random Polarization

Acoustic Aperture Size 5 mm x 10 mm

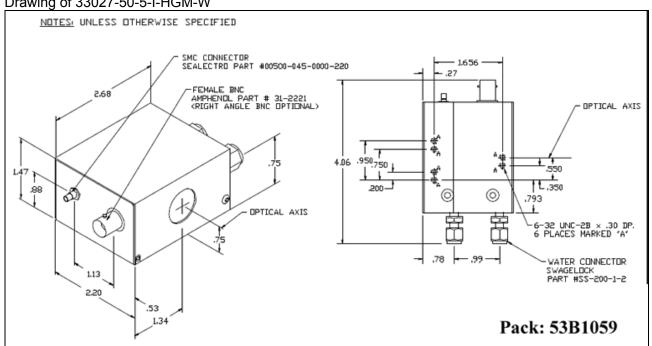
115 nsec / mm Beam Diameter Rise Time

**Deflection Angle** 5 mrad RF Power Level 50 Watts Impedance 50 Ohms

**VSWR** 1.2:1 @ 27.12 MHz

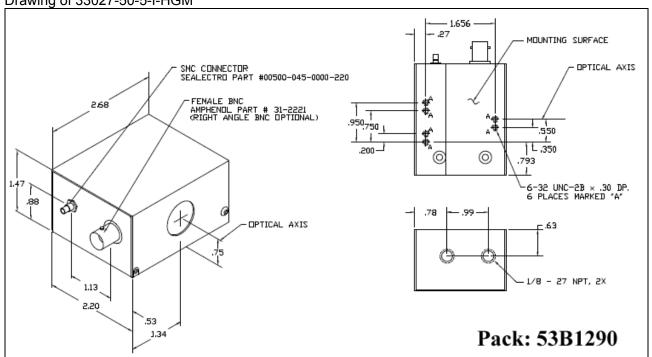
Package 33027-50-5-I-HGM-W (With water fittings: 53B1059)

33027-50-5-I-HGM (No water fittings: 53B1290)

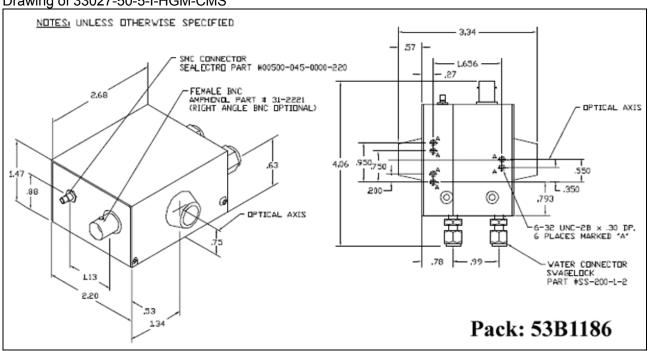

33027-50-5-I-HGM-CMS (With water fittings and aperture cones: 53B1186)

Cooling: Water Cooled @ 0.1GPM <300C Recommended Driver: Digital Driver System: 39027-50DS\*\*\*

Digital Driver Module: 38027-50DM\*\* or 39027-50DM\*\*\*


Options: \*\* = PK, PKPW \*\*\* = PPK, FPS, A05, R05

#### Drawing of 33027-50-5-I-HGM-W






Drawing of 33027-50-5-I-HGM



## Drawing of 33027-50-5-I-HGM-CMS





## 33027-50-5-I-M3

**PARAMETER SPECIFICATION** 

Interactive Material Crystal Quartz

Acoustic Mode longitudinal

**Operating Wavelength** 1064 nm

AR "V" Coated Window Configuration

Static Transmission >99 %

**Operating Frequency** 27.12 MHz

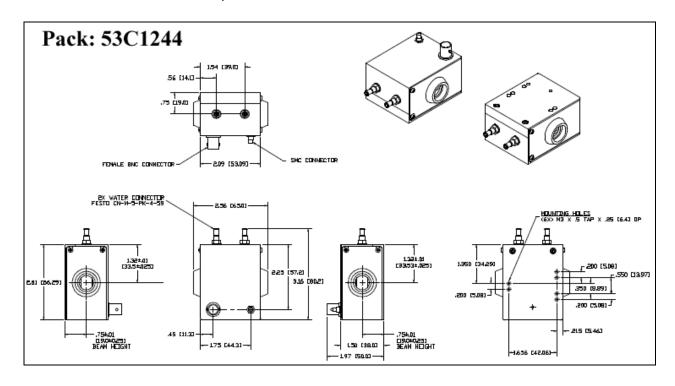
Loss Modulation >85 % With Linear Polarization Perpendicular to the Acoustic Propagation

>70 % With Random Polarization

Acoustic Aperture Size 5 x 10 mm

Rise Time 115 ns / mm Beam Diameter

**Deflection Angle** 5 mrad RF Power Level 50 Watts Impedance 50 Ohms


**VSWR** 1.2:1 @ 27.12 MHz

Package: 53C1244

Water Cooled @ 0.1GPM <300C Cooling:

Digital Driver System: 39027-50DS\*\*\* Recommended Driver:

> Digital Driver Module: 38027-50DM\*\* or 39027-50DM\*\*\* Options: \*\* = PK, PKPW; \*\*\* = PPK, FPS, A05, R05





## 33027-70-7-I-HGM-W

**PARAMETER SPECIFICATION** 

Interactive Material Crystal Quartz

Acoustic Mode longitudinal

**Operating Wavelength** 1064 nm

AR "V" Coated Window Configuration

Static Transmission > 99 %

**Operating Frequency** 27.12 MHz

> 85 % With Linear Polarization, Perpendicular to Loss Modulation

**Acoustic Propagation** 

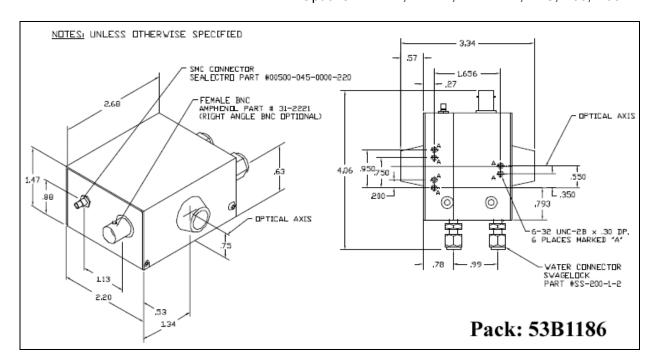
> 70 % With Random Polarization

Acoustic Aperture Size 7 X 10 mm

Rise Time 115 ns / mm Beam Diameter

**Deflection Angle** 5 mrad **RF Power Level** 70 Watts Impedance 50 Ohms

**VSWR** 1.2:1 @ 27.12 MHz


Water Cooling 0.1GPM <30oC

Package 53B1059

Optional Package With Cones 53B1186

Recommended Drivers: Digital Driver System: 39027-70DS\*\*\*

> Digital Driver Module: 38027-70DM\*\* or 39027-70DM\*\*\* Options: \*\* = PK, PKPW; \*\*\* = PPK, FPS, A05, R05





## 33027-10-1.5-I

**PARAMETER SPECIFICATION** 

Interactive Material Crystal Quartz

Acoustic Mode Longitudinal

Operating Wavelength 1064 nm

AR "V" Coated Window Configuration

Static Transmission >99 %

**Operating Frequency** 27.12 MHz

Loss Modulation >80 % with light polarization

Linear, perpendicular to acoustic propagation

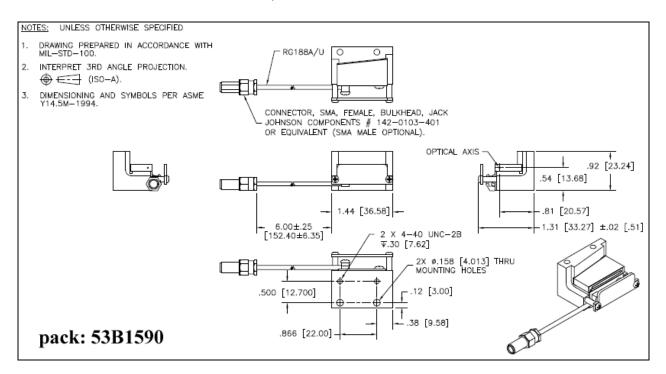
>65 % with random polarization

Acoustic Aperture Size 1.5 mm

Rise Time 115 ns/mm Beam Diameter

**Deflection Angle** 5 mrad RF Power Level 10 Watts 50 Ohms Impedance

**VSWR** <1.2:1 @ 27.12 MHz


53B1590 (Package must be maintained at a temperature Package:

below 50°C)

Digital Driver System: 39027-10DS\*\*\* or 38027-10DS\*\* Recommended Drivers:

Digital Driver Module: 39027-10DM\*\*\* or 38027-10DM\*\*

Options: \*\*\* = PPK, FPS, A05, R05; \*\* = PK, PKPW





## 33027-25-3-BR

**PARAMETER SPECIFICATION** 

Interactive Material Fused Silica

Acoustic Mode Longitudinal

**Operating Wavelength** 1064 nm

Window Configuration **Brewster** 

Static Transmission >99 %

**Operating Frequency** 27.12 MHz

Loss Modulation >75 % With Linear Polarized light Perpendicular to Acoustic Propagation

Acoustic Aperture Size (in Air) 2 mm

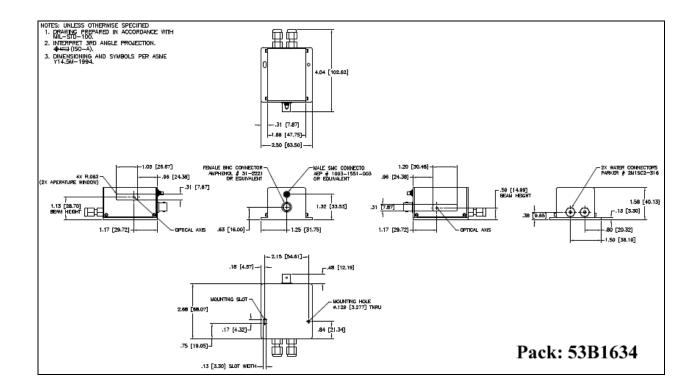
Rise Time 110 ns/mm Beam Diameter

**Deflection Angle** 4.8 mrad

RF Power Level < 35 Watts

50 Ohms Impedance

**VSWR** 1.2:1


BNC Connector, 53D1634 Package:

SMA Connector, 53D2668

Cooling Water cooling @ 0.1GPM @ <300C

Digital Driver System: 39027-35DS\*\*\* Recommended Drivers:

> Digital Driver Module: 39027-35DM\*\*\* or 38027-35DM\*\* Options: \*\*\* = PPK, FPS, A05, R05; \*\* = PK, PKPW





## 33041-10-1.5-I

**PARAMETER SPECIFICATION** 

Interactive Material Crystal Quartz

Acoustic Mode Longitudinal

**Operating Wavelength** 1064 nm

AR "V" Coated Window Configuration

Static Transmission >99 %

**Operating Frequency** 40.68 MHz

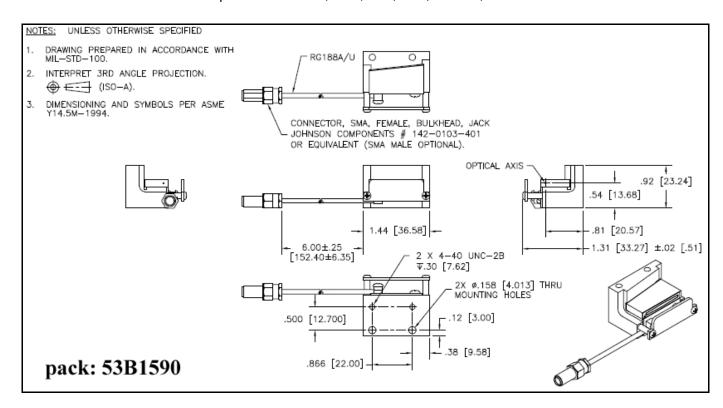
Loss Modulation >72 % with Linear Polarization, Perpendicular to acoustic propagation

>45 % with Random Polarization

Acoustic Aperture Size 1.5 mm

Rise Time 115 ns/mm Beam Diameter

**Deflection Angle** 7.5 mrad **RF Power Level** 10 Watts Impedance 50 Ohms


**VSWR** <1.2:1 @ 40.68 MHz

Package: 53B1590 (Package must be maintained at a temperature below 50°C.)

Digital Driver System: 39041-10DS\*\*\* or 38041-10DS\*\* Recommended Drivers:

Digital Driver Module: 39041-10DM\*\*\* or 38041-10DM\*\*

Options: \*\*\* = PPK, FPS, A05, R05; \*\* = PK, PKPW





## 33041-20-1.5-I-TB

**PARAMETER SPECIFICATION** 

Interactive Material Crystal Quartz

Acoustic Mode Longitudinal

**Operating Wavelength** 1064 nm

AR "V" Coated Window Configuration

Static Transmission >99 %

Operating Frequency 40.68 MHz

Loss Modulation >90 % with Linear Polarization, Perpendicular to acoustic propagation

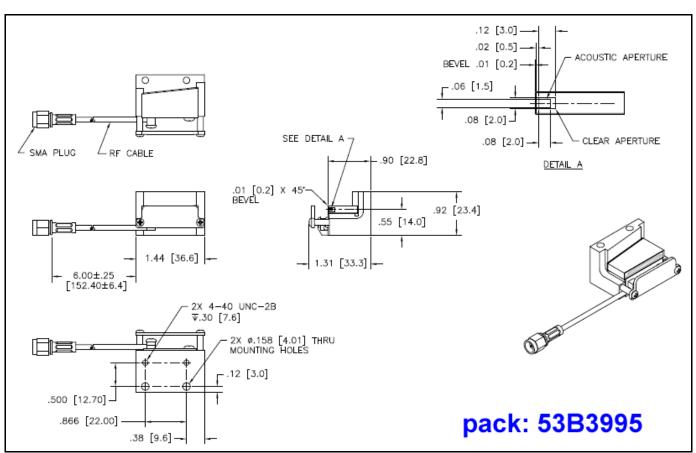
>80 % with Random Polarization

1.5 mm Acoustic Aperture Size

Rise Time 115 ns/mm Beam Diameter

**Deflection Angle** 7.5 mrad **RF Power Level** 20 Watts Impedance 50 Ohms

**VSWR** <1.2:1 @ 40.68 MHz


53B3995 (Package must be maintained at a temperature below 50°C.) Package:

Digital Driver System: 39041-20DS\*\*\* Recommended Drivers:

Digital Driver Module: 39041-20DM\*\*\*

Options: \*\*\* = PPK, FPS, A05, R05; \*\* = PK, PKPW







## 33080-10-1-I

**PARAMETER SPECIFICATION** 

Interactive Material Crystal Quartz

Acoustic Mode Longitudinal

Operating Wavelength 1064 nm

Window Configuration AR "V" Coated

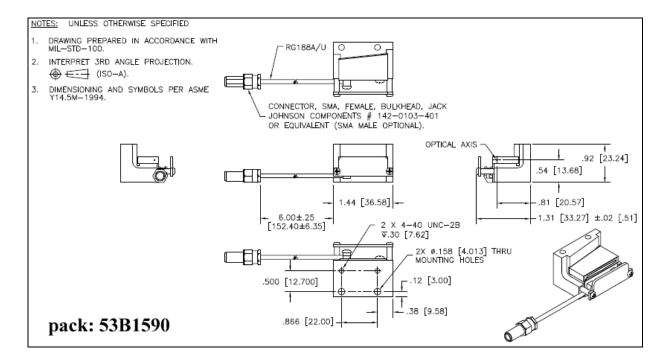
Static Transmission >99 % Operating Frequency 80 MHz

Loss Modulation >80 % With Linear Polarization, Perpendicular to Acoustic Propagation

>65 % With Random Polarization

Acoustic Aperture Size

Rise Time 115 ns/mm Beam Diameter


**Deflection Angle** 14.7 mrad RF Power Level 10 watts 50 ohms Impedance

**VSWR** <1.2:1 @ 80 MHz

Package: 53B1590

Recommended Drivers: Digital Driver System: 39080-10DS\*\*\* or 38080-10DS\*\*

> Digital Driver Module: 39080-10DM\*\*\* or 38080-10DM\*\* Options: \*\*\* = PPK, FPS, A05, R05; \*\* = PK, PKPW





## 34080-1-SF10

**PARAMETER SPECIFICATION** 

Interaction Material SF10

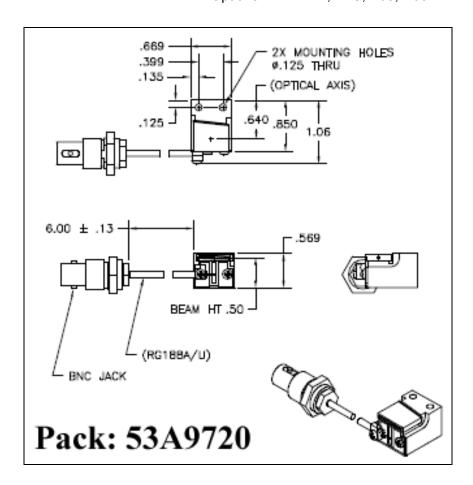
Acoustic Mode Longitudinal Operating Wavelength 1064 nm Window Configuration AR coated > 99 % Static Transmission Operating Frequency 80 MHz

Loss Modulation ≥ 40 % with random polarization

Acoustic Aperture Size 1 mm

Rise Time 162 nsec/mm beam diameter

**Deflection Angle** 21 mrad Max RF Power Level 3 watts Impedance 50 ohms


**VSWR** <1.2:1 at 80 MHz

53A9720 Package

Cooling Conduction (Housing must be kept under 50°C)

Digital Driver System: 39080-3DS\*\*\* or 38080-3DS\*\* **Recommended Drivers** Digital Driver Module: 39080-3DM\*\*\* or 38080-3DM\*\*

Options: \*\*\* = PPK, FPS, A05, R05 \*\* = PK, PKPW





## 33027-40-4-XY-SMA / BNC

**PARAMETER SPECIFICATION** 

Interactive Material Fused Silica

Acoustic Mode Longitudinal, Dual Axis

Operating Wavelength 1064 nm

Window Configuration AR "V" Coated

Static Transmission >99 %

**Operating Frequency** 27.12 MHz

Loss Modulation >90 % With Random Polarized Light

Acoustic Aperture Size 4 mm

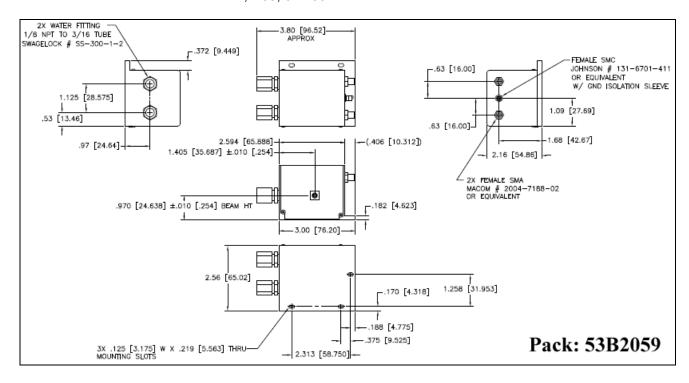
120 ns/mm Beam Diameter Rise Time

Acceptance Angle + 4 mrad **Deflection Angle** 4.8 mrad

RF Power Level 40 Watts / Axis

Impedance 50 Ohms Nominal

**VSWR** <1.2:1 @ 27.12 MHz


Package: SMA Connector 53B2059 **BNC Connector** 53B2208

Cooling Water cooling @ 0.38GPM @ <300C

Recommended Drivers: 39027-40DS-2CH\*, 39027-40DM-2CH\*, 38027-40DMPK-2CH

\* These drivers may be ordered with operating mode options: -FPS, -

PPK, A05, or R05





## 37027-3

**PARAMETER SPECIFICATION** 

Interactive Material Ge

Acoustic Mode Longitudinal

Operating Wavelength 10.6 um

**Optical Power Density** 5 Watt / mm2 Max

Window Configuration AR Coated

Static Transmission 85 %

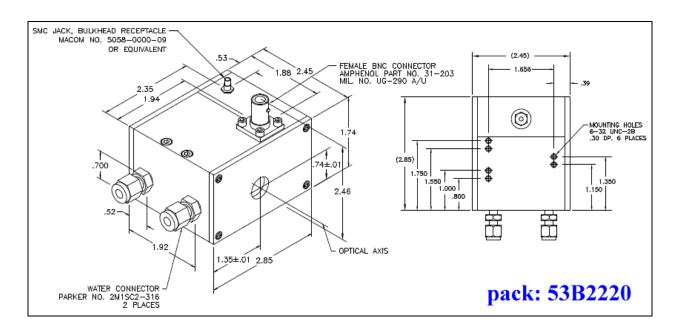
Operating Frequency 27.12 MHz

>85 % **Diffraction Efficiency** 

**Light Polarization** Linear, Parallel to acoustic propagation

Acoustic Aperture Size 3mm

Rise Time 120ns/mm beam diameter


**Deflection Angle** 52 mrad @ 10.6um

RF Power Level 30 Watts Impedance 50 Ohms

<1.2:1 @ 27.12 MHz **VSWR** 

Package: 53B2220

Water Cooled 0.38 litre / Minute 39027-30DSA05 Recommended Driver:





## 37027-5

**PARAMETER SPECIFICATION** 

Interactive Material Ge

Acoustic Mode Longitudinal

Operating Wavelength 10.6 um

5 Watt / mm2 Max **Optical Power Density** 

Window Configuration **AR Coated** 

Static Transmission >85 %

Operating Frequency 27.12 MHz

>75 % **Diffraction Efficiency** 

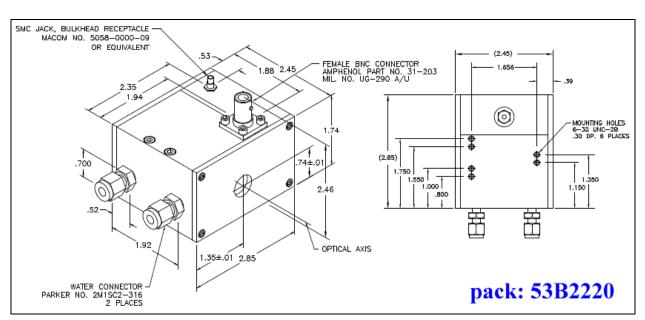
**Light Polarization** Linear, parallel to acoustic propagation

Acoustic Aperture Size 5mm

Rise Time 120 ns/mm beam diameter

**Deflection Angle** 52 mrad @ 10.6 um

RF Power Level 30 Watts


Impedance 50 Ohms

**VSWR** <1.2:1 @ 27.12 MHz

Package: 53B2220

Water Cooled 0.38 litre/Minute

39027-35-DSA05 Recommended Driver:





# **Model Number Designation Guide:**

Note: The prefix R in the model number Indicates compliance with the EU RoHS Directive.

| 1. AOM, AOBD, QSW                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Series Acoustic Cent<br>Frequency                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Series: 12: Mode Locker 13: Cavity Dumper 15: 50 MHz Bandwidth Modulator 17: 100 MHz Bandwidth Modulator 23: Low Cost TeO2 Modulator 24: Low Cost SF6 Modulator 25: Lead Molybdate Modulator 26: Chalcogenide Glass Modulator 32: Q-Switch Shear Wave 33: Q-Switch Longitudinal Wave  Acoustic Center Frequency: The oper Aperture Height: The maximum optica Wavelength: The optical Wavelength of | Options:  34: Flint Glass Q-Switches  35: High Power AO Modulator  36: Custom Q-Switches  37: CO2 Wavelength AO Modulator  42: 500 MHz and Greater Acoustic Frequency Modulator  43: Multi-channel Modulators  45: Slow Shear TeO2 Acoustic-Optic Beam Deflectors  46: Custom Acousto-Optic Beam Deflectors  47: Custom Acousto-Optic Modulators  48: Tunable Filter  48: Tunable Filter  49: Tunable Filter  40: Acoustor Acoustic Column in the crystal.  40: I aperture defined by the acoustic column in the crystal.  40: Tunable Filter  41: Custom Acoustor Acoustic Column in the crystal.  42: Tunable Filter  43: Tunable Filter  44: Tunable Filter  45: Custom Acoustor Acoustic Filter  46: Custom Acoustor Acoustic Filter  47: Custom Acoustor Acoustic Filter  48: Tunable Filter  48: Tunable Filter  49: Custom Acoustor Acoustic Filter  40: Custom Acoustor Acoustic Filter  40: Custom Acoustor Acoustic Filter  41: Custom Acoustor Acoustic Filter  42: Custom Acoustor Acoustic Filter  43: Custom Acoustor Acoustic Filter  44: Custom Acoustor Acoustic Filter  45: SF6 Filter Glass*  46: Custom Acoustor Filter  47: Custom Acoustor Acoustic Filter  48: Tunable Filter  48: Tunable Filter  49: Custom Acoustor Acoustic Filter  40: Custom Acoustor Acoustic Filter  40: SF6 Filter Glass*  41: Crystal Glass*  42: Crystal Quartz  43: Custom Acoustic Filter  44: Custom Acoustor Optic Modulators  45: SF6 Filter Glass*  46: Custom Acoustor Optic Modulators  46: Custom Acoustor Optic Modulators  46: Custom Acoustor Optic Modulators  47: Custom Acoustor Optic Modulators  48: Tunable Filter  48: Tunable Filter  49: Custom Acoustor Optic Modulators  40: Custom Acoustor Optic Material: See list below  40: Connectors: SMA, BNC, SMB ect.  40: Custom Acoustor Optic Modulator  40: Fiber Optic, HP  41: Acoustic Material: See list below  42: SMaterial: See list below  42: SMB ect.  43 |
| AOBD: 45050-68 is a 50 MHz  2. AOM AND Q-Switch Drivers                                                                                                                                                                                                                                                                                                                                             | center frequency AOBD, 6mm aperture for 0.8 um. T TeO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| R                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Series RF Frequency                                                                                                                                                                                                                                                                                                                                                                                 | Power Modulation Package Frequency Number of Options<br>Output Input Source Channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11: High Speed AOM Driver D: Digital 21: Low Cost AOM Driver A: Analog 31: 2nd Generation RF AOM Driver 38: 2nd Generation RF Q-Switch Driver 39: 3rd Generation RF Driver 54: Fiber Optical System 64:Custom Design NOTE: Not all of the fields shown above (System = rack mountable box with pow                                                                                                  | FPS First Pulse Suppression A05 Analog Modulation R05 Analog Modulation Required are necessary to designate a device.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3. AOBD Drivers and Custom                                                                                                                                                                                                                                                                                                                                                                          | Drivers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| R                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Series RF low<br>Frequency                                                                                                                                                                                                                                                                                                                                                                          | RF High Output Package Frequency Number of Custom<br>Frequency Power Source Channels Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Series: 64: 64040-751-8CH-16MB 8 CH PCAO 64020-200-2ADMDFS-A DFS AOBD 64389.5-SYN-9.5-1 CAVITY DU 64090-150-7ASVCO-2 VCO AOBD 64040-150-0.2ADMDFS-8X1 NEW 8 64040-150-0.8ADMDFS-8X1 NEW 8                                                                                                                                                                                                           | DRIVER M: Module DFS: Digital Frequency Synthesizer 2  MPER DRIVER SAS: Self Scanning Analog System 4 Ch 5, M  DRIVER ADS: Analog Digital System 8 Ch 16,16M,16B,16MB  CH PCAOM DRIVER SYN: Phase locked Synthesizer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |